
GUIDE

PRACTICE GUIDE
Applying a Principled Approach to
Develop and Use K-12 Computer
Science Formative Assessments

Satabdi Basu

Daisy W. Rutstein

Carol Tate

Practice Guide: Applying a Principled
Approach to Develop and Use K–12
Computer Science Formative Assessments

The National Comprehensive Center
The National Comprehensive Center (NCC) is one of 20 technical assistance centers supported under the
U.S. Department of Education’s Comprehensive Centers program from 2019 to 2024. The NCC focuses on
helping the 19 Regional Comprehensive Centers and state, regional, and local education agencies throughout
the country to meet the daunting challenge of improving student performance with equitable resources.

This publication is in the public domain. While permission to reprint is not necessary, reproductions should be cited as:

 Basu, S., Rutstein, D., & Tate, C. (2021). Practice Guide: Applying a principled approach to develop and use K–12
computer science formative assessments. National Comprehensive Center.

The contents of this publication were developed under a grant from the U.S. Department of Education. However, the
contents do not necessarily represent the policy of the U.S. Department of Education, and you should not assume
endorsement by the Federal government.

A copy of this publication can be downloaded from https://www.nationalcompcenter.org/.

www.nationalcompcenter.org 1

https://www.nationalcompcenter.org/

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Introduction
Formative assessment can be a powerful tool to support effective K-12 computer science (CS)
instruction. Having teachers and students engage with the formative assessment process can
increase student engagement and improve learning outcomes (Herman, 2013; Kingston & Nash,
2011; Popham, 2010; Wiliam, 2018). In this practice guide, we show how to apply the five-step
process outlined in the corresponding white paper to systematically develop or select formative
assessment tasks and use them to inform instruction. This guide illustrates formative assessment
literacy in practice. We encourage school-level and state-level leaders to find ways to promote
formative assessment literacy through CS professional development workshops, teacher
communities of practice, policy guidelines, and other avenues. These five steps are discussed in
greater detail:

» Step 1. Define and/or identify fine-grained learning targets to assess.

» Step 2. Determine evidence needed to measure progress towards learning targets.

» Step 3. Find or create tasks that elicit the desired evidence.

» Step 4. Determine how to evaluate and interpret the evidence provided by students.

» Step 5. Relate the interpretation and/or evaluation of the evidence to possible follow-up
activities.

This practice guide is not based on any specific curriculum; it can be used by anyone tasked with
teaching CS. It is designed to enhance teachers’ understanding of CS standards, determine how to
select and implement appropriate formative assessment tasks, and learn how to modify instruction
to address student challenges identified from the formative assessments. This process can increase
teachers’ knowledge of the CS content and how to teach it, as well as improve student engagement
and learning.

www.nationalcompcenter.org 2

https://compcenternetwork.org/sites/default/files/SRI_Whitepaper_InFormCS.pdf

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Step 1: Define and/or Identify Fine-Grained Learning Targets to
Assess
The first step in the process of developing and using CS formative assessments involves defining the
fine-grained learning targets corresponding to specific CS lessons or activities and identifying
which learning targets to focus on for formative assessment purposes. A learning target is a
statement describing desired student proficiency in one specific aspect of a domain. This first step
in the assessment design process comprises the following sub-steps:

» Step 1a: Defining learning targets.

» Step 1b: Identifying which learning targets to assess, and when to assess them.

Step 1a: Defining Fine-Grained Learning Targets

Teachers typically start with a CS curriculum or activity that has specified alignment with CS
standards. Standards are generally expressed as a set of broad learning goals, each of which
comprises multiple granular learning targets. Breaking down the standards highlights the critical
aspects of student learning in the domain in a way that clarifies the expectations for instruction and
assessment. In this practice guide, we choose a middle school CSTA standard (2-AP-12) and
demonstrate how the standard can be decomposed into multiple fine-grained learning targets. The
example we have chosen is a common learning objective in middle school.

2-AP-12: Design and iteratively develop programs that combine control structures,
including nested loops and compound conditionals (Grades 6–8)

Control structures can be combined in many ways. Nested loops are loops placed within loops.
Compound conditionals combine two or more conditions in a logical relationship (e.g., using AND, OR,
and NOT), and nesting conditionals within one another allows the result of one conditional to lead to
another. For example, when programming an interactive story, students could use a compound
conditional within a loop to unlock a door only if a character has a key AND is touching the door.

This standard focuses on students’ ability to use and develop nested control structures, such as
nested loops, nested conditional statements, compound conditionals, nested procedures,
conditionals nested within loops, and loops nested within conditionals.

Learning targets (fine-grained descriptions of what students should know and be able to do) for
this middle school standard are shown below. Each learning target integrates a concept related to
nested control structures with a computational practice. The concepts include nested loops, nested
conditionals, compound conditionals, repeated conditionals, and procedures (a code module that
performs a specific task and is referenced by a larger body of source code whenever required)
inside control structures. Computational practices include Create (creating a computational
artifact), Debug (debugging a computational artifact), and Interpret (interpreting the output of a

www.nationalcompcenter.org 3

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

computational artifact). For example, learning target #1a integrates the concept of nested loops
with the practices of creating and debugging computational artifacts.

Learning targets aligned with middle school standard 2-AP-12:

» 1a. Nested loops + Create and debug: Ability to create a nested loop and/or debug a given
nested loop to represent a given scenario

» 1b. Nested loops + Interpret: Ability to recognize or identify the output of code that includes a
nested loop. This includes the ability to identify how many times the action(s) will repeat and
the sequence of repetition.

» 2a. Nested conditionals + Create and debug: Ability to create nested conditional statements
and/or debug given nested conditionals to represent a given narrative description

» 2b. Nested conditionals + Interpret: Ability to identify the output of nested conditional
statements

» 3a. Compound conditionals + Create and debug: Ability to create and/or debug a conditional
statement that includes logical (AND, OR, NOT) operators to represent a given narrative
description

» 3b. Compound conditionals + Interpret: Ability to identify the output of a conditional
statement that uses logical (AND, OR, NOT) operators as part of the condition

» 4a. Repeated conditionals + Create and debug: Ability to create and/or debug a conditional
statement that is evaluated repeatedly (conditional inside a loop, or a repeat-until construct)

» 4b. Repeated conditionals + Interpret: Ability to identify the output of a conditional statement
that is evaluated repeatedly (conditional inside a loop, or a repeat-until construct)

» 5a. Procedures inside a control structure + Create and debug: Ability to create and/or debug
a procedure that is called within a different control structure (e.g., procedure inside a loop,
procedure called by another procedure)

» 5b. Procedures inside a control structure + Interpret: Ability to identify the output of a
procedure that is called within a control structure (e.g., procedure inside a loop, procedure
called by another procedure)

The middle school standards, including 2-AP-12, assume that students are proficient on the
elementary level CS standards. With many students being introduced to CS for the first time in
middle school, this is often not the case. Teachers working toward 2-AP-12 will need to assess
students for prerequisite skills and focus on building these skills first where they are lacking.

Prerequisite elementary-level learning targets for middle school standard 2-AP-12:

» 1a. Loops + Create and debug: Ability to create and/or debug a loop that sets up an action that
repeats, either forever or for a set number of times

www.nationalcompcenter.org 4

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

» 1b. Loops + Interpret: Ability to recognize or identify the output of code that includes a simple
loop. This includes the ability to identify how many times action(s) will repeat and what
sequence they will repeat in.

» 2a. Simple conditionals + Create and debug: Ability to create and/or debug a simple
conditional statement (IF-THEN or IF-THEN-ELSE)

» 2b. Simple conditionals + Interpret: Ability to identify the output of a simple conditional
statement (IF-THEN or IF-THEN-ELSE)

Teachers can choose to begin with assessing the prerequisite elementary-level learning targets or
move directly to assessing the middle school learning targets. Step 1b provides additional
guidelines for choosing learning targets to assess.

Step 1b. Identify Which Learning Targets to Assess and When

Once teachers have determined the learning targets corresponding to the standards covered in
their target curriculum materials, the next step is to identify which of them to assess and at what
point during the lesson to assess them. Some learning targets, though important components of a
standard, may not be the focus of assessments in specific classrooms or grade levels. When a
curriculum activity claims to be aligned to a particular standard, it does not necessarily mean that
the activity is aligned to all learning targets included as part of the standard. Teachers can take their
daily lesson plans from the CS curriculum or activity they are using in their classrooms and map the
lessons to specific learning targets.

The mapping between daily lessons and learning targets can help teachers visualize the flow of
their instruction and identify when they want to insert formative assessment activities. There is no
one way to determine when it is best to use formative assessments, but there are some key
questions to consider:

1. Should learning targets be assessed separately at different time points, or should multiple
learning targets be grouped together in a single assessment activity? Both approaches can be
appropriate based on the time available and the focus of a certain course or curriculum—the
important thing is to be aware of whether the activity elicits evidence about all the targets of
interest.

2. Can formative assessment activities be integrated into existing classroom routines, such as daily
exit tickets or classroom polls, instead of carving out separate time for assessment activities?
Making assessment a regular part of instruction enables closer monitoring of progress and
timely adjustments.

3. Are there learning targets that are critical for students to master in order to learn subsequent
concepts? If yes, plan formative assessment activities after instruction on such learning targets.
This way, a teacher can identify students who have not mastered a concept and may struggle
with learning the next concept and find ways to support such students.

In steps 2–5, we focus on Learning Targets 3a and 3b related to compound conditionals to
demonstrate how to design and use formative assessments aligned to learning targets.

www.nationalcompcenter.org 5

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Step 2: Determine Evidence Needed to Measure Progress
Towards Learning Targets
Once a learning target has been identified, the next step is to determine what evidence can be
gathered that would reflect on the learning target. The evidence must be something observable,
such as a written or oral response. Thinking through what this evidence might look like helps
ensure alignment between the assessment task and the learning targets. Below are examples of the
types of evidence that would be appropriate for two of the learning targets listed in Step 1.

Learning Target 3a: Ability to create and/or debug a conditional statement that
includes logical (AND, OR, NOT) operators to represent a given narrative description

This learning target can be further broken down into two parts: being able to create a conditional
statement and being able to debug a conditional statement. When identifying the possible evidence,
both aspects of the learning target should be considered.

Evidence that students know how to create a conditional statement for a scenario might be that
they generate a conditional statement that uses AND, OR, or NOT and that matches the description
of the scenario, or that they identify a correct conditional statement from a list of options.
Expectations concerning the degree and depth to which students are engaging with the learning
target may vary and may change over time.

For the debugging aspect of the target, teachers must decide if it is enough for students to identify
an error or if students should also be required to explain why the error occurred and/or fix the
error. Again, there is a range of possible evidence that a student might provide, and it is up to the
teacher to decide what is most appropriate based on what they want to know about their students.
Teachers may also want to consider if they are measuring debugging along with creating, and if so,
what additional evidence they would need to make sure the student is engaging in both practices.

Examples of possible evidence for Learning Target 3a:

» Students create a computer program that includes a conditional statement with a logical
operator to match a given scenario.

» Students select an appropriate conditional statement with a logical operator from given options
to match a given scenario.

» Students specify the logical operator and variables within a conditional to match a given
scenario.

» Students state whether or not a conditional statement matches a given scenario.

» Students explain why a given conditional statement does not match a given scenario.

» Students select from given options to identify what would have to change to make a conditional
statement match a given scenario.

www.nationalcompcenter.org 6

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

» Students modify a given conditional statement to match a given scenario.

» Students describe how to modify a conditional statement to match a given scenario

Learning Target 3b: Ability to identify the output of a conditional statement that uses
logical (AND, OR, NOT) operators as part of the condition

This learning target is about students demonstrating that they understand the logic in a conditional
statement involving logical operators. Teachers may provide possible outputs (e.g. as a multiple-
choice item) or they may require students to predict the output of conditional statements. Teachers
should decide which of these types of evidence aligns with their goals and choose or design a task
that will elicit the kind of evidence they seek.

Possible evidence for Learning Target 3b:

» Students select the output of a conditional statement that uses logical operators from a given set
of options.

» Students generate the output of a conditional statement that uses logical operators.

» Students state whether or not a given conditional statement involving logical operators
produces a given output.

www.nationalcompcenter.org 7

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Step 3: Find or Create Tasks that Elicit the Desired Evidence
In this step, teachers develop or select appropriate assessment tasks corresponding to learning
targets. Specifying the task characteristics, or requirements of all assessment tasks, first will help
ensure that the tasks produce the desired evidence of learning. The task characteristics are related
to the learning target but may also include other task requirements (e.g., reading level or amount of
reading). Below are some examples of task characteristics.

Examples of task characteristics for Learning Target 3a:

» Task includes a scenario that would need a conditional statement with at least one logical
operator.

» Task includes a specific representation or programming environment in which to create or
debug a conditional statement.

» For debugging, task includes a conditional statement that has an error in it.

» Task includes a prompt asking student to create a conditional statement or identify and correct
the error in a conditional statement.

» Task is written using simple language for a reading level that is a grade below to ensure that
students are able to comprehend the language used in the task.

Examples of task characteristics for Learning Target 3b:

» Task includes a conditional statement (in a given representation) with at least one logical
operator.

» Task includes a prompt asking students to identify the results of the conditional statement given
a set of conditions.

Once task characteristics are determined, tasks can be selected or developed to match the
characteristics. Pre-existing tasks can be selected if they align with the identified task
characteristics. When developing assessment tasks, the context in which the tasks will be used and
the desired level of complexity need to be considered. The scenario described in a task needs to be
relatable and meaningful for its intended audience. The level of complexity can be varied based on
the type of evidence sought by a teacher, as described in Step 2. For example, for Learning Target
3a, students can be asked to create a conditional statement on their own, fill in specific parts of an
incomplete conditional statement, or select from given options for how to create a conditional
statement. Varying the number of logical operators required in a conditional statement is another
way to vary the complexity of assessment tasks. Assessing more than one learning target
simultaneously as part of an assessment task is yet another way of increasing task complexity. Even
for a single learning target, it is important to ensure that factors external to the learning target like
reading load or knowledge of math operators like “<” and “>” do not interfere with the assessment
of the learning target.

www.nationalcompcenter.org 8

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Sometimes, constraints related to scoring assessment also need to be considered when developing
or selecting tasks. For example, automatic scoring may be required, or the time needed to score
may need to be minimized. Open-ended responses may require the development of a scoring rubric,
some discussion and agreement among teachers about the elements of a correct and complete
response, and hence more time to score. Multiple-choice items, on the other hand, take much less
time to score than open-ended responses and scoring can be easily automated, though they require
more work to create up front. The decision of which item format to use also depends on existing
classroom norms and the familiarity of students and teachers with different formats. For example, a
teacher may use a multiple-choice task along with a method for having students assign a confidence
rating to the answer choices. This format provides teachers with additional information on how
confident students are in their responses as well as what other answer options students were
considering. However, students need to be comfortable accurately portraying their confidence
rating and need to have an understanding of how this rating will be used. Teachers using the
confidence rating along with multiple-choice questions also need to understand how to combine
the confidence information along with student responses to elicit evidence about student learning.

We illustrate some examples of assessment tasks for Learning Targets 3a and 3b in Figures 1– 4.

Figure 1. A multiple-choice assessment task aligned to Learning Target 3a1

A water coaster ride at an amusement park has age and height requirements. You
have to be at least 5 years old and at least 42 inches tall to be able to go on the ride.
The following app is written to check if someone is able to take the ride.

Which of the following expressions should be attached to the if block?

1 Assessment developed for CoolThink@JC initiative. Suggested citations: (1) Basu, S., Rutstein, D. W., Xu, Y., Wang, H., & Shear, L. (2021). A
principled approach to designing computational thinking concepts and practices assessments for upper elementary grades. Computer Science
Education, 1-30; (2) Shear, L., Wang, H., Tate, C., Basu, S., & Laguarda, K. (May, 2020). CoolThink@JC pilot evaluation: Endline report. SRI
International.

www.nationalcompcenter.org 9

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Figure 2. The basketball task - a constructed response assessment task aligned to
Learning Target 3a

Figure 3. A multiple-choice assessment task aligned to Learning Target 3b1

1 Assessment developed for CoolThink@JC initiative. Suggested citations: (1) Basu, S., Rutstein, D., Xu, Y., & Shear, L. (2020). A Principled
Approach to Designing a Computational Thinking Practices Assessment for Early Grades. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education (pp. 912-918); (2) Shear, L., Wang, H., Tate, C., Basu, S., Laguarda, K. (May, 2020). CoolThink@JC Pilot
Evaluation: Endline Report. Menlo Park, CA: SRI International..

www.nationalcompcenter.org 10

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Figure 4. A multiple-choice assessment task aligned to Learning Target 3b that
does not use any specific programming language representation

www.nationalcompcenter.org 11

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Step 4: Determine How to Evaluate and Interpret the Evidence
Provided by Students
When selecting or developing a task, it is important to consider how the task will be evaluated and
what inferences will be made about a student based on that evaluation. In this next step, teachers
will generate a list of the type of evaluation criteria desired. Teachers should determine how they
want to evaluate the evidence that was specified in Step 2. Once the task is developed/selected,
teachers will use the evaluation criteria to create a rubric that applies a set of scoring rules to the
task. Tables 1 and 2 show examples (not an exhaustive list) of possible evaluation criteria and
corresponding evidence statements for Learning Targets 3a and 3b respectively.

Table 1. Examples of possible evaluation criteria for Learning Target 3a - creation
and debugging of compound conditionals

Evidence Statement (from Step 2) Examples of evaluation criteria
Students create a computer program that
includes a conditional statement with a logical
operator to match a given scenario

How well the computer program matches the
given scenario

Students select an appropriate conditional
statement with a logical operator from given
options to match a given scenario

Whether the conditional statement selected from
the given options is correct.
OR
Whether the conditional statement selected
matches a common student challenge

Students state whether or not a conditional
statement matches a given scenario

Ability to identify cases when the conditional
correctly models a given scenario and cases when
the conditional fails

Students explain why a given conditional
statement does not match a given scenario

Accuracy of the explanation of why a conditional
statement does not match a given scenario

Students modify a given conditional statement to
match a given scenario

Accuracy of the correction(s) to a given
compound conditional statement.

Table 2. Examples of possible evaluation criteria for Learning Target 3b –
interpretation of compound conditionals

Evidence Statement (from Step 2) Examples of evaluation criteria
Students select the output of a conditional
statement that uses logical operators from a
given set of options

Whether or not the correct output was selected

Students generate the output of a conditional
statement that uses logical operators

Accuracy of the generated or predicted output

Students state whether or not a given conditional
statement involving logical operators produces a
given output

Whether or not the student correctly identified if
a given conditional statement produces the given
output

www.nationalcompcenter.org 12

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Consideration of the possible types of evidence desired can help point to the type of task that
should be used. For example, for the basketball task described in Figure 2 aligned to Learning
Target 3a, students are given a scenario and are shown corresponding code. The task focuses on
assessing students’ ability to debug a conditional statement, and provides the information that an
error occurred, thus focusing the task on having students modify the provided code. The target
evaluation criterion in this scenario is “Accuracy of the correction(s) to a given compound
conditional statement.” Determining how to score students’ open-ended responses depends on
what constitutes an accurate fix for the given error. In this case, what a teacher might look for
includes the following:

» The student indicates that the current program can be fixed by adding or modifying code to
work with 2 baskets (when numBaskets = 2)

» The student describes how the current program can be modified so that the program says “You
win” to Sam who has made 2 baskets.

» The student does not introduce new errors that would make the program provide incorrect
responses for scenarios where it now provides the correct response.

A teacher can create a rubric that looks for these three aspects. The rubric can specify how to apply
the checklist of aspects to the student work and get a score, or it can help categorize students
depending on the types of errors they make. How a teacher designs the rubric depends on how they
are using the information from the task and their follow-up strategies. Table 3 shows an example
rubric with example student responses.

www.nationalcompcenter.org 13

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Table 3. A sample rubric corresponding to assessment task in Figure 2

Score Rubric criteria Student Response
3 points » Student indicates the code needs to

be fixed to work with 2 baskets.
» Student modifies the code to work

when the player makes 2 baskets
» Student’s code continues to work in

all other cases.

» The code needs to change to make it so
you can win with 2 baskets. You can
change the =1 to be >= 1 and that would
work.

» The code needs to add the case for 2
baskets. It needs to add another
conditional statement that says if the
baskets = 2 and the distance is greater than
20 then also return you win.

2 points » Student indicates that the code needs
to be fixed to work with 2 baskets.

» Student modifies the code to work
when the player makes 2 baskets, but
introduces a new error that causes at
least 1 other case not to work.

» Can change the code to make it okay for 2
baskets. Just change it so all it has is
(NumBaskets>0 and distance
>20). [Student misses the case where the
distance is not greater than 20 and the
person makes 3 baskets].

1 point » Student indicates that the code needs
to be fixed to work with 2 baskets.

» Student does not describe a fix or
modifies the code in a way that does
not fix the error.

» You have to fix the program for the case
where NumBaskets is 2.

0 point » Student does not respond, or the
response does not indicate how to fix
the error in the code.

» The code needs to be fixed.

If the teacher was interested in additional information, such as whether or not the student could
identify the error, they may modify the assessment task prompt and add additional questions. For
example, the teacher could remove the part of the question that specifies that the program has an
error and instead ask the student to identify whether the program functions correctly or has an
error, as shown in Figure 5.

For rubric development for this new version, the first step is again going back to the evidence
statement generated in Step 2. With the addition of questions a and b, the task is also addressing
the evidence statement “Students generate the output of a conditional statement that uses logical
operators.” Related to this evidence statement is the evaluation statement: Accuracy of the
generated or predicted output. While the correct response for question a of the basketball task is
“You did not win”, a teacher may not only care about correct versus incorrect responses, but also
about what incorrect response a student chooses. If a teacher only wants to know about the
correctness of student responses, they can just check whether or not the student selected or
generated the correct response. If a teacher wants to know more about students’ thinking and why
students got the response incorrect, they can categorize students by their responses to question a.
Students who choose an option where the program says “You win” might have difficulties
navigating compound conditionals, or distinguishing between what a program should do and what

www.nationalcompcenter.org 14

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

it actually does, while students who picked “It does not say anything” or “It gives an error message”
might have general confusion about how conditional statements work.

Figure 5. Alternate version of the basketball task from Figure 2

www.nationalcompcenter.org 15

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Step 5: Relate the Interpretation and/or Evaluation of the
Evidence to Possible Follow-up Activities
In the final step, teachers determine how to interpret and respond to the evidence they have
gathered. The goal of formative assessment is to make instruction responsive to student thinking.
This means taking a careful look at the mistakes that students make. The specific nature of student
mistakes drives the feedback. Sometimes, mistakes are due to random guesses or one-off slips, but
more often they reveal underlying misconceptions (confidence indicators associated with
assessments can help distinguish between errors due to random guesses and errors due to
misconceptions). It is important to understand that mistakes are often related to students’ prior
knowledge. Understanding the origin of the mistake – whether it stems from a flawed idea of how
computer programs work or from an overapplication of an idea from another discipline like
mathematics — can be helpful for teachers.

After identifying a student misconception, a teacher’s next steps can include re-teaching the topic,
providing individual feedback, or facilitating whole-class discussions, code-tracing activities,
argumentation activities, and additional unplugged or programming activities focusing on similar
concepts. Several factors will influence how a teacher proceeds, including how much time can be
allotted, how widespread the learning challenge seems to be, and what additional activities are
available. Sometimes, re-teaching a concept to the whole class is warranted; sometimes the group is
ready to move on, but a teacher may need to follow up with a few students. Establishing classroom
routines that enable the efficient use of formative assessment data is important. For example,
making student thinking visible to the class through projecting student responses and answer
choices or facilitating collective code-tracing activities on the whiteboard can inspire productive
class discussions. Pairing students who give opposing responses can also be a good way to provoke
deeper thinking. Table 4 provides examples of how the evidence from the alternate version of the
basketball task (Figure 5) can be interpreted and provides possible next steps.

www.nationalcompcenter.org 16

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Table 4. Example follow-up steps for student responses to the alternate version
of the basketball task shown in Figure 5

Interpretation of Student Responses Follow-up Steps
Most students answer questions a, b, and c correctly Move on to the next topic or lesson and

follow up with a few students individually
Students who answer question a with “you win!” and
question b with “Yes, what the program says is correct”
are showing that they understand how the program
should work, but cannot comprehend how the program
actually does work. These students are not able to
identify the error in the program. This could be a case of
the “superbug,” (Pea et al., 1987), the expectation that
the computer will use common sense (i.e., if one basket
wins, then two should also win). These students will
benefit from follow-up activities that make clear how
computers and humans “think” differently.

Have students write directions for each
other to follow exactly (such as how to
make a peanut butter and jelly sandwich)
to help students understand that
computers follow directions, whether they
make sense humanly or not.

Students who answer question a with “you win!” and
question b with “No, there is an error in the program”
are showing that they neither understand how the
program is supposed to work nor can they comprehend
how the program actually works.

First, have students come up with
different ways to win the basketball game.
Help students understand the scenario in
question a and that Sam should win the
game. Then have students trace the code
or embody different variables to predict
the output of the code segment.

Students who answer question a correctly with “You did
not win” are showing that they understand how the
conditional statement works. If these students are asked
to share their response to question c about fixing the
program, it can initiate rich discussions about different
approaches to solving the problem. Students can reason
about why some approaches work and some do not, and
how some approaches are more elegant and efficient
than others. Looking for patterns in student approaches
to debugging can also yield insight into student
misconceptions and thus guide follow-up instruction.

Once a student has suggested a fix, have
other students trace the resultant code
block-by-block (or line-by-line) to
determine whether the suggested fix
works or not.

Students who expect the computer to not say anything
or give them an error message in this scenario are
showing that they do not understand how conditional
statements work. In this case, revisiting the fundamental
properties of conditionals, perhaps with unplugged
activities at first, would be a good next step.

Play a game with students where you read
a series of “if/then/else” statements and
they stand or sit depending on whether
the statement is true or false. Start with
simple conditions and be sure to later
include multiple conditions joined through
logical operators.

www.nationalcompcenter.org 17

Practice Guide: Applying a Principled Approach to Develop and Use K–12 Computer Science
Formative Assessments

Conclusion
The goal of the 5-step process outlined above is to ensure that the formative assessment matches
its purpose and meets the teacher’s need. The information specified in each of the steps clarifies the
requirements of the assessment and specifies how the assessment can be used. By using this
process, teachers can both support their students’ learning and deepen their own understanding of
the CS standards and how students are expected to engage with these standards.

References
Herman, J. (2013). Formative assessment for next generation science standards: A proposed model.

Invitational Research Symposium on Science Assessment. CRESST.

Kingston, N. & Nash, B. (2011). Formative assessment: A meta-analysis and a call for research.
Educational Measurement: Issues and Practice, 30, 28–37.

Pea, R.D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of programming
expertise. Focus on Learning Problems in Mathematics, 9(1), 5–30. https://hal.archives-
ouvertes.fr/hal-00190540/en/

Popham, W. J. (2009). Assessment literacy for teachers: Faddish or fundamental? Theory Into
Practice, 48(1), 4–11.

Wiliam, D. (2018). Embedded formative assessment. Solution Tree Press.

www.nationalcompcenter.org 18

https://hal.archives-ouvertes.fr/hal-00190540/en/
https://hal.archives-ouvertes.fr/hal-00190540/en/

	Practice Gude: Applying a Principled Approach to Develop and Use K-12 Computer Science Formative Assessments
	The National Comprehensive Center
	Introduction
	Step 1: Define and/or Identify Fine-Grained Learning Targets to Assess
	Step 1a: Defining Fine-Grained Learning Targets
	Step 1b. Identify Which Learning Targets to Assess and When

	Step 2: Determine Evidence Needed to Measure Progress Towards Learning Targets
	Learning Target 3a: Ability to create and/or debug a conditional statement that includes logical (AND, OR, NOT) operators to represent a given narrative description
	Learning Target 3b: Ability to identify the output of a conditional statement that uses logical (AND, OR, NOT) operators as part of the condition

	Step 3: Find or Create Tasks that Elicit the Desired Evidence
	Step 4: Determine How to Evaluate and Interpret the Evidence Provided by Students
	Step 5: Relate the Interpretation and/or Evaluation of the Evidence to Possible Follow-up Activities
	Conclusion
	References

